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What this talk is about

1. Large-scale structured dynamic models

I heterogeneous, mechanistic

I (not discretizations of a PDE — fluid dynamics, heat flow,
elastic structures, electromagnetic transmission, etc.)

I medical physiology, power systems, systems biology ...

I settings in which the large model is an evolving summary of
accumulated knowledge about a system

I large uncertainty in parameters

I no a priori fixed set of input and output channels

I discovering and exploiting structure
... challenges, pleasures, strategies, tools
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What this talk is about

2. Model reduction

I to structured gray-box models that are interpretable in some
meaningful and useful way, in the setting of the original large
model

I not just a one-time interaction to solve a single abstracted
computational problem

I rather, a repeated engagement to refine and consolidate one’s
understanding of the model and the system

I a broad approach — using a variety of tools — can yield good
insight/results

I carrying lessons back to the original large model
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Medical physiology
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A gray box from physiology

I Structured, mechanistic model

I Physically meaningful parameters, incompletely specified

A gray box from
physiology (8 blocks),
Guyton et al., 1967
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Accretion and refinement (yields 28 blocks)
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More familiarly, circulation
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One of many feedback control loops: baroreceptor reflex

Sensor mechanisms:
pressure sensors
(baroreceptors)

I carotid sinus

I aortic arch

Effector mechanisms:

I heart rate

I cardiac contractility

I arteriolar resistance

I venous tone

George Verghese (MIT) Getting to the Gray Box



A larger-scale gray box (354 blocks), Guyton et al., 1972
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Complex enough for me!

I “large” doesn’t have to be huge to be difficult

I already worthy of structural analysis
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Arthur Guyton (1919–2003)

Among the great names of cardiovascular
physiology. 42 years as chair of the University
of Mississippi Department of Physiology and
Biophysics. First edition of his physiology text
appeared in 1956.

The Guyton 354-block diagram appears as the
Abstract of a 1972 paper (”Circulation:
Overall Regulation” in Ann. Rev. Phys.). The
paper ends with:

”If the general principles of this systems
analysis are correct, and we believe they are,
then it seems clear that the field of circulatory
physiology is on the verge of changing from the
realm of a speculative science to that of an
engineering science.”
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Current efforts in systems physiology
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Current efforts in systems physiology

I The Physiome Project (National Simulation Resource at U. of
Washington)

I “The physiome is the quantitative and integrated description
of the functional behavior of the physiological state of an
individual ... and is built upon information and structure”

I “... develop and database observations of physiological
phenomena and interpret these in terms of mechanism”

I Virtual Physiological Human (EuroPhysiome)
I “... a way to share observations, to derive predictive

hypotheses from them, and to integrate them into a constantly
improving understanding of human physiology/pathology, by
regarding it as a single system”
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Power systems
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Small section of interconnected power system

(Red Eléctrica de España)
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A small power system model
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The (swing-mode) dance of a thousand elephants

Geographical Shape of Mode Number    1 ( −0.1913,  1.4536J)

(Luis Rouco, IIT/ICAI, Madrid)

383 generators; 1,914 buses (nodes); 7,398 state variables; 7,403 algebraic variables
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Exciting and recording this swing mode

(Juan Manuel Rodriguez, Red Eléctrica de España)
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Power system monitoring

(Joachim Lehner, Power Generation and Automatic Control Dept., U. of Stuttgart)
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Swing modes, coherence, governor action

(Joachim Lehner, Power Generation and Automatic Control Dept., U. of Stuttgart)
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Stepping back ...
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Potential value of large-scale gray-box models
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Potential value of large-scale gray-box models

I Such models can summarize structural/mechanistic knowledge
(and may be the only available starting point)

I allow simulation and exploration with normal and perturbed
(pathophysiological) parameters, and for various interventions
(valuable in design, training, ...)

I suggest refinements and new experiments

I For hierarchical or multi-scale models
I constitutive equations and parameters of components at one

level can come from analysis of more refined submodels

I system-level behavior can determine parameters/boundary
conditions for submodels
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Where large-scale gray-box models fall short

I Difficulty of parameter tuning to match measurements
(identification)

I very many parameters
I observed signals in any one study are typically not sufficiently

rich to reliably estimate all parameters, so parameters are
poorly known

I strategies such as subset selection can help

I Too complicated for the practitioner to use with confidence in
real time
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Model exploration and reduction
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Some questions already for the Guyton model
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Some questions already for the Guyton model

I Is this really modular in some sense (beyond the way it’s
drawn)? how do we approach this?

I Perhaps there are reasons to expect modularity, from the way
the system has evolved?

I Evolution can presumably produce subtle (hard to discover)
but beneficial (difficult to ignore) linkages among pre-existing
modules
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More questions for the Guyton model

Is there a systematic (and at least semi-automated) process that
reveals the significance of the 8-block structure in the 354-block
Guyton diagram?

⇒
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Champion model reducers
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Champion model reducers

I Doctors!

I having absorbed Gray’s Anatomy of the Human Body,
Guyton’s Medical Physiology, Harrison’s Principles of Internal
Medicine, pathology, pharmacology, ...

I extracting and applying minimal models in real time, dozens
of times a day

I How do they do it?!

I increasingly important to find out
I aging population and fewer healthcare workers
I more data being collected, archived
I standard of care advancing
I control researchers could do a lot to help
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“Integrating data, models and reasoning in critical care”

NIH project at MIT (PI: Roger Mark)
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Monitoring intra-cranial pressure (ICP)

(http://adam.about.com)
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Compartmental model of intra-cranial space

(Stevens et al., IEEE Trans. Biomed. Eng., 2008)
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Electrical circuit analog

(Ursino and Lodi, Am. J. Physiol., 1998)
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Drastically reduced model and noninvasive ICP estimation

C

Rpa(t)

pic

q(t)
q1(t)

+
−

pic
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Drastically reduced model and noninvasive ICP estimation

C

Rpa(t)

pic

q(t)
q1(t)

+
−

pic

I Key fact: far-end pressure is ICP, not venous pressure
(Starling resistor effect)

I Measure flow q(t) with Doppler ultrasound at middle cerebral
artery

I Use radial artery pressure as proxy for pa(t)
I Identify parameters, including ICP (= pic)

(Kashif et al., Computers in Cardiology, 2008)

George Verghese (MIT) Getting to the Gray Box



ICP estimation results

(with F.M. Kashif, T. Heldt, M. Czosnyka, V. Novak)
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More ICP estimation results

(with F.M. Kashif, T. Heldt, M. Czosnyka, V. Novak)
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Back to more general model reduction
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Back to more general model reduction

What do we offer from control theory?
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A popular paradigm for model reduction

Model (assume parameter values given):

E dx(t)/dt = Ax(t) + Bu(t) , y(t) = Cx(t)

Projection:
x(t) ≈ V x̂(t) and W ∗V = I

⇓
Reduced Model:

(W ∗EV ) dx̂(t)/dt = (W ∗AV )x̂(t) + (W ∗B)u(t)

ŷ(t) = (CV )x̂(t)
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Choices for projection matrix V

I Balanced truncation: V is determined from dominant
eigenspace of PO, where

I P = reachability Gramian
I O = observability Gramian

I stable reduced models from stable parent model
I explicit bound on H∞-norm of input/output error system

I Proper Orthogonal Decomposition (POD) focuses on
(empirical) reachability Gramian

I Krylov methods for (generalized) moment matching of
transfer matrix

H(s) = C (sE − A)−1B

at specified values of s
I can preserve various desired properties by strategic choice of

matching frequencies

George Verghese (MIT) Getting to the Gray Box



Extensions and alternatives

I Direct fitting of low-order model, e.g., in frequency domain

I Optimal Hankel-norm approximation
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Extensions and alternatives

I Direct fitting of low-order model, e.g., in frequency domain

I Optimal Hankel-norm approximation

I The preceding methods — including projection — typically
don’t care about gray-box structure

I nothing to carry back to the large-scale model

I exception: when low-order model in direct fitting is a gray box
derived from large model
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Recent texts

1. Approximation of Large-Scale Dynamic Systems
A.C. Antoulas, SIAM, 2005
(Detailed and thorough on the topics it focuses on: balanced

truncation, Hankel-norm reduction, Krylov subspace methods)

2. Model Order Reduction: Theory, Research Aspects and
Applications
W.H.A. Schilders, H.A. van der Vorst, J. Rommes (Eds.),
Springer, 2008
(Predominantly oriented to CAD for circuits, MEMS)
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Recent work begins to tackle gray-box issues

I Parameterized model order reduction
(e.g., work by L. Daniel and collaborators)

I Structure-preserving reduction — preserves block structure
(several chapters in the preceding text by Schilders et al.)
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Applying balanced truncation: Glycolysis in yeast

(model from Hynne et al., Biophys. Chem. 2001) (from http://jjj.biochem.sun.ac.za/)
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Balanced truncation in such a model

Most relevant variable:

xr ,1 = −9.63x1 − 0.064x2 − 11.3x3 − 11.6x4 − 12.0x5

−6.10x6+2.51x7−9.28x8−9.24x9−9.27x10−9.37x11−9.36x12−2.40x13

(Bruggeman et al. in Biosimulation in Drug Development, Bertau et al. (Eds.), Wiley 2008)
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Balanced truncation in such a model

Most relevant variable:

xr ,1 = −9.63x1 − 0.064x2 − 11.3x3 − 11.6x4 − 12.0x5

−6.10x6+2.51x7−9.28x8−9.24x9−9.27x10−9.37x11−9.36x12−2.40x13

I but not clear what to do with this fact!

I authors suggest maybe small coefficient for x2 is significant

I should something also be made of the fact that several
coefficients are close to −9.4? is there any reason the pooled
variable x1 + x8 + x9 + x10 + x11 + x12 might be significant?

I though potentially important for model reduction, these are
not questions balanced truncation asks
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More generally ...

I It’s typically not useful to be told some particular linear
combination of variables spanning the entire original large
model is important (or not important)

I More helpful to know what recognizable (interpretable)
variables or components in the large model are critical (or
not) to representing the behavior of interest
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Don’t forget other powerful approximation/reduction
approaches ...

1. Averaging or (more generally):
I tracking (local) means
I (local) harmonics
I variances
I other summarizing functions

2. Singular perturbation (time-scales)

3. Near-decomposability/slow-coherency (spatial scales and
time-scales)

All these maintain interpretability in a natural way with respect to
the original model. Singular perturbations is widely used (and all
these should be taught in model reduction courses!)
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Averaging

For quasi-periodic waveforms (as in power systems or power
electronics), represent x(τ) on the interval (t − T , t] by a Fourier
series:

x(τ) =
∑

Xk(t)e j2πτ/T

This is useful when the Xk(t) are slowly-varying Fourier
coefficients, or dynamic phasors. They are given by

Xk(t) =
1

T

∫ t

t−T
x(τ)e−jk2πτ/T dτ
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Averaging

For quasi-periodic waveforms (as in power systems or power
electronics), represent x(τ) on the interval (t − T , t] by a Fourier
series:

x(τ) =
∑

Xk(t)e j2πτ/T

This is useful when the Xk(t) are slowly-varying Fourier
coefficients, or dynamic phasors. They are given by

Xk(t) =
1

T

∫ t

t−T
x(τ)e−jk2πτ/T dτ

I The dynamic equations for x(t) are then approximated by
dynamic equations for slowly-varying low-order phasors

I Used quite routinely now in power systems and power
electronics

(Sanders et al., IEEE Trans. Power Electronics, 1991)
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Tracking means and variances in chemical reaction systems

I The (forward Kolmogorov) Chemical Master Equation tracks
the evolution of the probability distribution of species
molecule numbers in systems of chemical reactions

I Important for small (subcellular) volumes, but is generally of
unmanageable size

e.g., complex formation and dissociation: X1 + X2

k1


k2

X3.

I Mass action kinetics (MAK) tracks mean concentrations, and
yields

dµ3

dt
= k1µ1µ2 − k2µ3
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Mass Fluctuation Kinetics (MFK)

I Mass fluctuation kinetics (MFK) jointly tracks the means and
variances/covariances, yielding

dµ3

dt
= k1µ1µ2 − k2µ3 + k1σ

2

with a corresponding equation for dσ2

dt

I More generally,

dµ

dt
= Sr = Sρ + Sξ

dV

dt
= MV + VM′ +

1

Ω
SΛS′

(Singh & Hespanha, 2006; Gómez-Uribe & Verghese, 2007; Goutsias, 2007)
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Comparisons

MAK and MFK give two different steady-state expressions for the
expected concentration:

µ3 =
k1

k2
µ1µ2, and µ3 =

k1

k2
(µ1µ2 + σ2).
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Near-decomposability/Slow-coherency

ẋ(t) = Ax(t) = (A0 + εK )x(t)

with
A0 = block diag{Ai} for i = 1, · · · ,N

and with A as well as each Ai for i = 1, · · · , N having a single
eigenvalue at 0, with associated eigenvector [1 1 1 · · · 1]T .
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Near-decomposability/Slow-coherency

ẋ(t) = Ax(t) = (A0 + εK )x(t)

with
A0 = block diag{Ai} for i = 1, · · · ,N

and with A as well as each Ai for i = 1, · · · , N having a single
eigenvalue at 0, with associated eigenvector [1 1 1 · · · 1]T .

I The zero modes of the individual subsystems get globally
coupled through the ε terms, but the other modes are not
much affected

I The system modes accordingly comprise fast O(1) local
modes and slow O(ε) global modes

I When only the slow modes are excited, the state variables in
each of the N areas move essentially in unison (coherence),
i.e., the areas swing against each other.

Simon & Ando, 1961; Ando & Fisher, 1963; Courtois, 1977; Chow & Kokotovic (slow-coherency), 1982, 1985
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Slow coherency

(Joachim Lehner, Power Generation and Automatic Control Dept., U. of Stuttgart)
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Selective Modal Analysis (SMA)
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Notation

I General response of ẋ(t) = Ax(t) is of the form

x(t) = α1v1e
λ1t + · · ·+ αNvNeλN t

where the vi are the right eigenvectors of A, with associated
eigenvalues λi , so

Avi = viλi

Here vie
λi t is termed the ith mode

I One can similarly define left eigenvectors wT
i by

wT
i A = λiw

T
i

normalized such that wT
i vj = 1 when i = j , and 0 otherwise
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A small power system model
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... and the eigenvalues of the linearized model
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Participation factors

I A non-dimensional measure of the participation of the jth
state variable in the ith mode is given by

the jth component of the right eigenvector vi associated with
this mode,

weighted by the jth component of the left eigenvector wT
i :

pji = wjivji or equivalently P = transpose(inv(V )). ∗ V

I Participation factors are insensitive to choice of units for the
state variables

I Our normalization of the left eigenvectors ensures
∑

i pji = 1,
and

∑
j pji = 1.

I Note similarities with Relative Gain Array (but also key
differences)

(with Pérez-Arriaga & Schweppe, IEEE Trans. Power Apparatus & Systems, 1982; later work by E. Abed et al.)
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Participations in slow mode of simple mass-spring system

I The peak displacements are approximately the same for all
masses (similarly for peak velocities), so the right eigenvector
alone will not show any significant differentiation among the
three

I The participation factors are proportional to the peak energies
of the masses (and hence vary approximately as the masses in
this case)

I Only the two large masses need to be retained in a reduced
model that captures an approximation of this mode
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Dynamic patterns in an ‘Infinite Bus’ power system model

Participation factors
-2.7382+j9.2529 -0.2390+j6.7618

δ +0.0208-j0.0098 +0.4931+j0.0108
ω +0.0208-j0.0098 +0.4931+j0.0108

ψfd -0.0075-j0.0238 -0.0180-j0.0119
ψkd1 +0.0036-j0.0023 -0.0118-j0.0191
ψkq1 +0.0000+j0.0026 -0.0041+j0.0101
ψkq2 -0.0022-j0.0004 -0.0086+j0.0001
xex1 +0.4771+j0.1262 +0.0283+j0.0062
xex2 +0.4652-j0.1362 +0.0318-j0.0156
xex3 +0.0222+j0.0535 -0.0037+j0.0085

Conclusions: The lightly damped oscillatory mode is primarily
electromechanical, involving perturbations of rotor angle and
velocity, δ and ω respectively; the other mode is due to the exciter
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Subsystem participation, dynamic patterns

I Participation of the subsystem S in the ith mode:

pSi =
∑

j∈S

pji = wT
Si vSi

The subsystem participation is invariant under transformations
that only affect the state variables xS of the subsystem

I Dynamic patterns, i.e., close relationships between subsets of
modes and subsets of state variables, can be identified by
using the participation factors and the subsystem
participations
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For small power system model ...
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Separating relevant and less relevant variables for model
reduction

Less relevant dynamics can be approximated by
I zero-frequency gain −A2A

−1
4 A3 to give reduced model

ẋ(t) = (A1 − A2A
−1
4 A3)x(t) (familiar from singular

perturbation)

I generalizations: H(λ̂) = A2(λ̂I − A4)
−1A3 for some λ̂;

multi-mode possibilities
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A simple algorithm for reduced-order eigenanalysis

I A first approximation of the mode of interest 0λ1 is captured
by

ṙ = A1r , A1 ∈ <n×n

I Selective Modal Analysis successively refines such
approximations of the eigenvalue by incorporating the effect of
the less relevant dynamics on that mode

I The SMA reduced-order system is:

ṙ = (A1 + H(jλ1))r

I Eigenanalysis of A1 + H(jλ1) yields, among the eigenvalues, a
choice for j+1λ1, and the iteration continues

I Converges locally precisely when summed participations of r
variables exceed summed participations of remaining z
variables; ratio determines convergence rate

I Multi-mode extensions available

(with Pérez-Arriaga, Schweppe, Pagola, Rouco, ..., 1981 and later)
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Slowest swing mode

Geographical Shape of Mode Number    1 ( −0.1913,  1.4536J)

(Luis Rouco, IIT/ICAI, Madrid)

383 generators; 1,914 buses (nodes); 7,398 state variables; 7,403 algebraic variables
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Slow-mode participations

Participations in Mode Number    1 ( −0.1913,  1.4536J)

(Luis Rouco, IIT/ICAI, Madrid)

383 generators; 1,914 buses (nodes); 7,398 state variables; 7,403 algebraic variables
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Glycolysis
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Structure of linearized glycolysis model
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Glycolytic oscillation
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I For operating point corresponding to glycolytic oscillation,
what small subset of variables suffices to capture the
oscillation?

I One approach: exhaustive search, starting from 2× 2 models
and going up, to find smallest truncated model that is
oscillatory

I Almost 60,500 eigenanalyses later, arrive at 6th-order model

(Danø et al., FEBS Journal, 2006)
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Nodes with high participation in oscillatory mode
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I Participation factors computed from a single eigenanalysis of
the full (20× 20) matrix quickly point to 4 significant variables
that capture the oscillation (in a “residualized” model)

I Time-scale decomposition allows further reduction to a
3rd-order model

(with G. Cedersund, U. of Linköping)
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Conclusions

I Worthwhile to attend to care and feeding of gray-box models
(alongside care and feeding of algorithms or computations)

I Model reduction should pay attention to model too, not just
reduction

I Don’t settle for having a model handed to you over a wall! —
control people can be of great help to the modelers (control
folks working in systems biology know this well)

I Consider getting involved in the “other” systems biology, i.e.,
systems biology of organs and organisms — physiology

I Try out participation factors on linearized model for your
favorite physical application — you may find new insights!
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Thank you!
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